Experimental Assessment of Wind Loads on Vinyl Wall Siding
نویسندگان
چکیده
Wind-induced damage to multi-layer building wall systems, such as systems with vinyl siding, is common, especially in hurricane-prone areas. Wind load distribution through these multi layered walls and the amount of load reduction due to pressure equalization is expressed through pressure equalization factors (PEFs). The ASTM D3679 standard suggests a PEF of 0.36, which means a 64% reduction in the net pressure on the siding. This paper presents results from an experimental study conducted on a low-rise building subjected to realistic wind loading conditions at the wall of wind (WOW) experimental facility at Florida International University. Results from area-averaged mean and peak pressure coefficients indicated that a very small portion of the total wind load is carried by the vinyl siding. However, PEFs were found to be much higher when individual taps were considered. For instance, PEFs ranged from 71 to 106% for the case of pressure coefficients with negative sign (suction) and from 39 to 110% for the case of pressure coefficients with positive sign (pressure). When a combined set of taps was considered, PEFs ranged approximately from 50 to 80% for the case of “suction” and from 15 to 75% for “pressure.” Based on the 1 m2 of tributary area used in ASCE 7-10 Standard, results show that the net load on vinyl wall siding can be obtained by reducing the net design load for the entire wall assembly by 25 and 60% for suctions and pressures, respectively. However, a smaller tributary area (<1 m2) can experience a local peak load that can induce damage to connections, especially in the case of relatively flexible wall coverings, with no or very little load sharing between connection points. Results indicate that for smaller areas (~0.2 m2) the allowable percentage reductions should not be more than 15 and 25% for suctions and pressures, respectively. This study shows that the suggested ASTM PEF of 0.36 may lead to the underestimation of loads for the design of details affected by local loads. However, further research is needed to consider more cases when developing adequate design load guidelines for vinyl wall sidings.
منابع مشابه
Decision making in the purchase of siding: A survey of architects, contractors, and homeowners in the U.S. Northeast
Choosing the finish covering for the exterior walls of a home is an important decision. The choice of siding has a direct influence on appearance, performance, durability, repair, maintenance, and cost. Todays marketplace presents designers, builders, and homeowners with a long list of materials and products tochoose from. Ithasbeenestimated inat least one investigation that the existing varie...
متن کاملEXPERIMENTAL INVESTIGATION OF EFFECTS OF WALL POROSITY AND SUCTION ON THE FLOW QUALITY IN A TRANSONIC WIND TUNNEL
A trisonic wind tunnel has been modified to improve its flow quality when operating at transonic speeds through perforated walls and side suctions. The usefulness of such a perforated wall, already known, is reduction of the blockage effect as well as the shock elimination. Two types of perforated walls have been used in this investigation. The first wall had a porosity of about 22% and the hol...
متن کاملNUMERICAL AND EXPERIMENTAL INVESTIGATION OF WIND PRESSURE COEFFICIENTS ON SCALLOP DOME
The wind loads considerably influence lightweight spatial structures. An example of spatial structures is scallop domes that contain various configurations and forms and the wind impact on a scallop dome is more complex due to its additional curvature. In our work, the wind pressure coefficient (Cp ) on the scallop dome surface is studied numerically and experimentally. Firstly, the programming...
متن کاملAn Experimental Investigation on Dynamic Wind Loads Acting on a Wind Turbine Model in Atomspheric Boundary Layer Winds
An experimental study was conducted to investigate the dynamic wind loads acting on a wind turbine model sited in atmospheric boundary layer winds. The experimental studies are conducted in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. A three-blade Horizontal Axial Wind Turbine (HAWT) model was placed in atmospheric boundary layer w...
متن کاملAn experimental study on wind loads acting on a high-rise building model induced by microburst-like winds
In the present study, an experimental investigation is conducted to quantify the characteristics of the microburst-induced wind loads (i.e., both static and dynamic wind loads) acting on a high-rise building model, compared to those with the test model placed in conventional atmospheric boundary layer (ABL) winds. The experimental study is performed by using an impinging-jet-based microburst si...
متن کامل